
DANSSICK STEELS

Entry Probe Communications at the Giant Planets

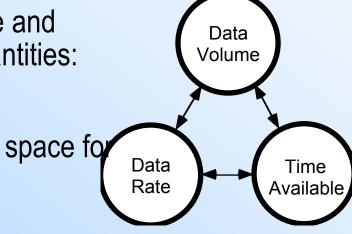
Thomas R. Spilker

Jet Propulsion Laboratory

3rd International Planetary Probe Workshop Anavyssos, Attiki, Greece June 28, 2005

Organization

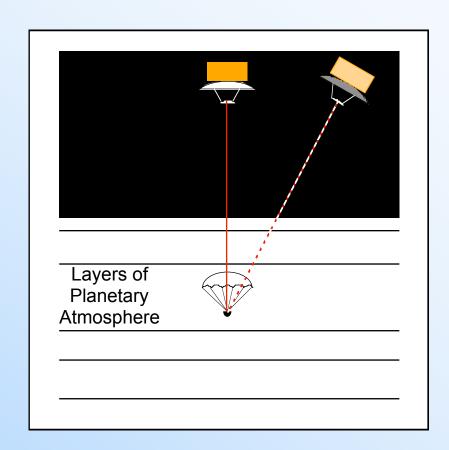
- Requirements
- Description of the Problem
- Radio Hardware Characteristics and Performance
- Radio Propagation Effects
- Geometry
- Conclusions


Requirements

- Initial requirements come from the science community
 - What do we need to measure?
- Project requirements quickly become a trade between scientific desire and engineering capability (and budget!)
- Communications systems architecture and design must balance three critical quantities:

Data Volume, Data Rate, and Time

 A fourth quantity impacts the trade the other three:


– Where (at what levels) should the measurements be made?

Definition of the Problem

- A probe at some level within a planetary atmosphere ...
- ... must send a given volume of data in a given time ...
- ... through the intervening atmosphere, and possibly other non-vacuum media ...
- ... over some distance r ...
- ... to a receiving station of given performance.
- It is possible (overwhelmingly likely!) that the receiving station might not be directly overhead of the probe

Definition of the Problem

Approximation for a system's maximum data rate:

$$R_D \approx R_o \cdot \left(\frac{\pi}{4c}\right)^2 P_t \left(\frac{fD_tD_r}{r}\right)^2 \prod_i \xi_i$$

or, equivalently:

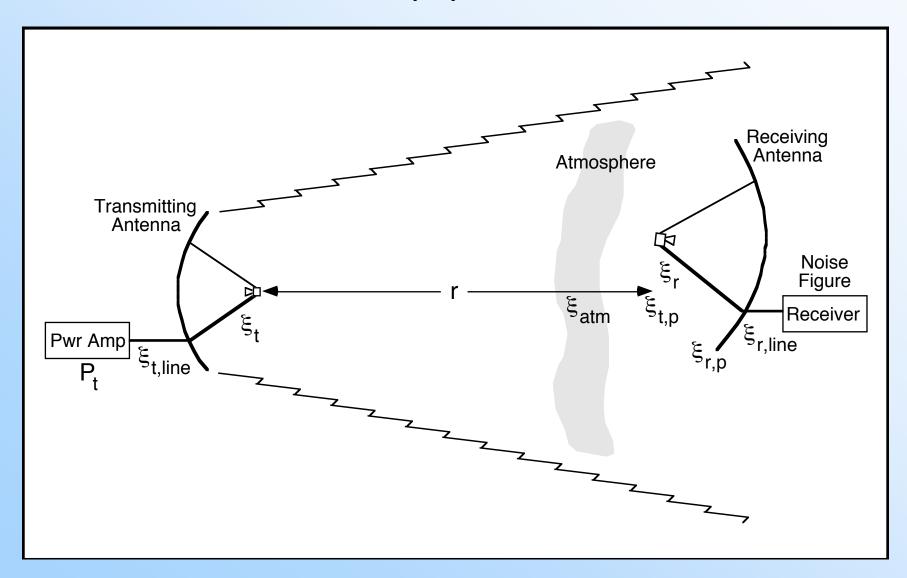
$$R_D \approx R_o \cdot \frac{P_t}{16} \frac{G_t D_r}{r^2} \prod_i \xi_i$$

P_t: transmitter power

G_t: transmitting antenna *gain*

D_r: receiving aperture diameter r: distance between antennas

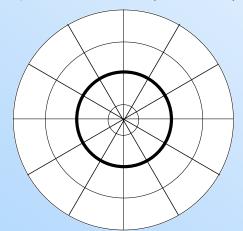
ξ: loss terms (e.g., signal absorption or scattering, antenna losses)


R_o: constant (approximately) of proportionality depending on the receiving system's performance, coding schemes, noise, etc.

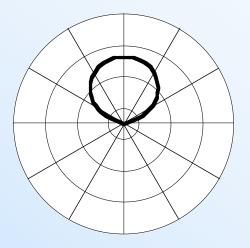
Definition of the Problem

General Telemetry Systems & Loss Terms

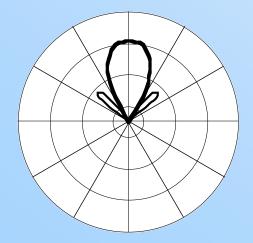
Radio Hardware Characteristics and Performance



Radio Hardware Characteristics & Performance

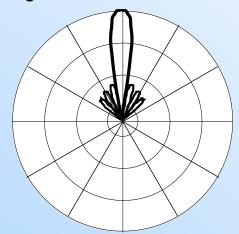

Antenna Patterns & Gain

"Isotropic Radiator" (a fiction)



Gain G is the ratio of an antenna's on-axis emitted signal intensity to that of an isotropic radiator driven by the same total power.

"Low Gain" antenna



"Medium Gain" antenna

 $G = \frac{4\pi A}{\lambda^2}$ $= \left(\frac{\pi}{c} fD\right)^2$

"High Gain" antenna

Radio Hardware Characteristics & Performance

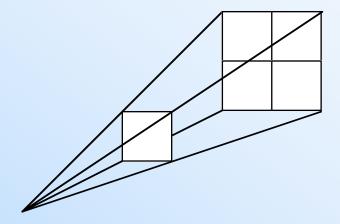
Component Size, Mass, & Power

- Generally, components increase in size and mass as frequency decreases (wavelength increases; $\lambda = c/f$)
 - Typical components include antennas, connectors, directional couplers, etc.
- Usually an entry probe's largest single power consumer is the telecom system's RF power amplifier
 - Currently there are two main types of power amplifiers:
 - Traveling Wave Tube Amplifiers, or TWTAs
 - Usually heavier than an SSPA, but DC-to-RF efficiency ~50%
 - Solid State Power Amplifiers, or SSPAs
 - Usually lighter than a TWTA, but DC-to-RF efficiency 10-20%
 - Trade usually favors SSPA for low power, TWTA for high power

Radio Hardware Characteristics & Performance

Power Supplies

- Figures of Merit for power supplies
 - Specific energy: total energy available per mass of power system
 - Specific power: maximum usable power drain per system mass
- Most entry probe missions have descent-phase durations from one to a few hours
 - Primary batteries are excellent power sources for such missions
 - High specific energy and specific power
 - Can handle low-power missions of a few days or weeks duration
- Longer missions need more complex, and less efficient, systems
 - Solar or RPS primary source, sometimes with secondary batteries
 - Aerobots, long-duration balloons or landers

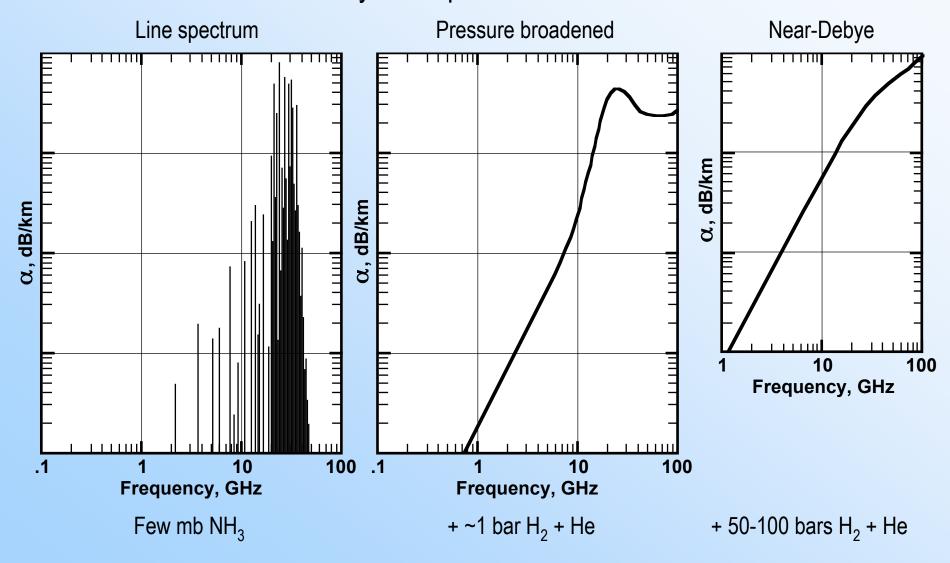


Attenuation by Spherical Divergence

- In the "far field", radio waves propagate radially away from an antenna
 - RF power spreads over an area proportional to r²
 - Intensity of the radio signal goes as 1/r²
 - Reason for the r² in the denominator of the R_D equation
 - That's life (physics!); no way around it!

Attenuation by Scattering

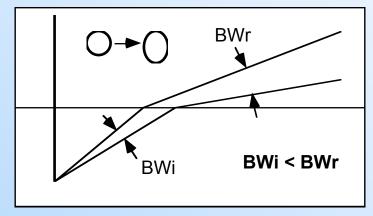
- Scattering changes the propagation direction of an EM wave
- Redirection of RF energy away from the antenna beam
- Due mostly to inhomogeneities in atmospheres
 - Gases: Temperature variations, turbulence
 - Liquids: Cloud droplets and local concentrations
 - Solids: Ice cloud particles and local concentrations
- Can also occur in planetary and interplanetary plasmas


Attenuation by Absorption

- Characterized by the "absorption coefficient" α
 - Units of Optical Depths or dB (some logarithmic unit) per unit length
 - Many influences: concentration, T, P's of other gases, radio frequency
- Many constituents of giant planet atmos's can absorb RF energy
 - Gases: ammonia, water, hydrogen sulfide, phosphine (others?)
 - Liquids: water, water-ammonia solutions
 - Solids: water, ammonia
 - Collisional plasmas
- Absorption Spectra: absorption coefficient vs (radio) frequency
 - Liquids: usually have non-resonant "Debye" spectra
 - Absorption coefficient of a given sample is proportional to f²
 - Gases: very complex behavior by some gases, especially ammonia
 - Discrete transitions within coupled rotational-vibrational states (and other transitions) generate many absorption lines
 - Pressure broadening increases line widths so they overlap, creating a continuum spectrum
 - Extreme pressure broadening produces a quasi-Debye spectrum, and can broaden powerful IR absorption lines into the RF portion of the spectrum

Attenuation by Absorption in a Gas: Ammonia

Radio Propagation Effects: Other



Polarization Effects

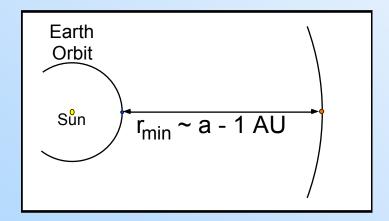
- A magnetoplasma (such as an ionosphere) can rotate the polarization plane of a linearly polarized signal
 - Degree of effect depends on plasma parameters that can vary with time
 - Receiving stations may not be able to accurately predict the polarization direction
- Circularly polarized signals are unaffected
 - Reason interplanetary communications systems use circular polarization

Refractive Beam Spreading

- Bending of a refracted ray increases as the angle of incidence increases
 - "Bottom" of an antenna beam bends more than the "top"
 - Beam becomes elongated, spreads the energy over a larger area: attenuation

Noise Sources

- The receiving system itself
 - Receiver internal noise (characterized by receiver noise temperature)
 - blackbody radiation from antenna parts
- Earth's atmosphere
 - Gases with non-zero opacity, at non-zero temperatures, radiate
 - Earth has absorbing gases, especially water
 - Scattering of noise into receiving antenna beam
- Radiation from the target planet
 - Atmospheric thermal emission
 - Synchrotron radiation, especially at Jupiter, few MHz to a few GHz
- Background noise sources: astrophysical objects, etc.
- Local (to the receiving system) interference
 - Spacecraft EMI
 - On Earth, industrial & military operations, aircraft, ground vehicles, etc



Solar System Architecture

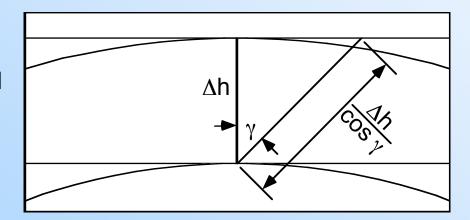
- The giant planets are in distant, fairly circular, nearly coplanar orbits
 - No large advantage to any particular parts of their orbits
- Opposition timing yields advantageous probe-to-Earth geometry
 - Distance is a minimum
 - Signal propagation is radial to sun

Solar System Scales

- Fundamental unit of convenience is the Astronomical Unit or AU
 - Average distance from the Sun's center to Earth's center
 - Currently defined as 149,597,870.66 km
 - ◆ The solar system is a <u>BIG</u> place
- Regular planet nearest the Sun is Mercury
 - Average distance from the Sun is 0.3871 AU (0.3075 0.4667)
- Regular planet farthest from the Sun is Neptune
 - Average distance from the Sun is 30.0577 AU (29.8372 30.2782)
- Large distances cause problems for solar system exploration
 - Travel from Earth to Neptune at 965 KPH (600 MPH) takes ~515 years!
 - Telemetry data rates using "common" techniques are inadequate
 - Due to that r² in the denominator of the R_D equation

Planetary System Architecture

- Planets have non-zero obliquity
 - Viewing aspect from Earth (sub-Earth latitude) changes with time
 - Jupiter ~3 deg. Saturn & Neptune ~ 30 deg. Uranus almost 100 deg.
 - Delivery of probes to desired locations can be difficult at times
- Giant planets have moons
 - Must avoid impacts with them
 - Must ensure they do not occult the signal path
 - But ... they can be used for maneuvering within a planetary system
- Giant planets have rings
 - Some are essentially opaque at microwave frequencies
 - Saturn B ring, Uranus ε ring
 - Avoid signal path occultations (may eliminate much real estate!)
- Jupiter has intense radiation belts
 - Probes to many locations must pass through them
 - Some advantageous trajectories pass through the most intense parts
 - Synchronous rotation of orbital and flyby trajectories

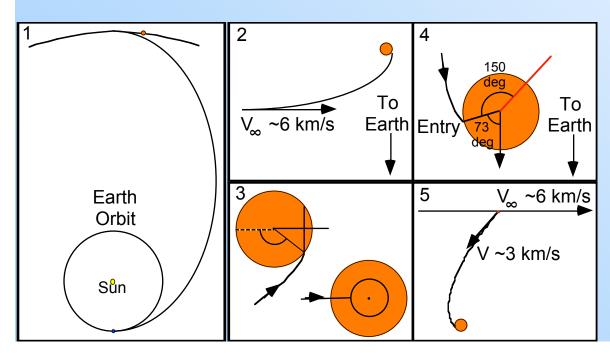


Planetary Dynamics & Structure

- Giant planets rotate quickly
 - Probes don't "sit still" after entry; probe zenith changes quickly
- Giant planets have weather: winds, turbulence, possibly rain
 - Can scatter and/or absorb energy out of radio beam
 - Turbulence can cause large, rapid antenna pointing excursions
 - High-speed zonal winds
- Atmospheric scale heights can be large
 - Result of light gases and relatively low gravity
 - Increases absorption losses from a given pressure level
 - Ex: Saturn

$$H = \frac{RT}{Mg}$$

- Giant planet sizes allow a Euclidean approximation
 - Atmospheric thickness of even several hundred km appears locally "flat"
 - Absorption in logarithmic units is proportional to path length!



Orbital Dynamics Constraints

- Even the Project Manager and PI can't defy physical laws
 - Orbital mechanics is well understood at the level needed for probes
 - Some physical laws can help get around others, but it's often expensive!
- Example: Entry probe at one of Jupiter or Saturn's poles
 - Relay spacecraft cannot just "sit" above the pole -- it must be moving
 - If the RSC is not to crash into the planet, its motion moves it away from the pole
- Example: Deep entry probe at Jupiter's sub-Earth point for DTE

 Attempt to do direct-to-Earth comm generates a requirement for >7 km/s delta-V

Conclusions

- Architecting entry probe data relay systems is a very complex, multidisciplinary task
 - Involves not just radio engineering, but also orbital mechanics, planetary and atmospheric physics, microwave spectroscopy...
- For the past 4 decades, radio system design teams have met the challenges of the design tasks
 - Analyzing performance of reasonable alternatives from their "toolkit"
 - Choosing the best architecture and system for the job
- DTE is great -- for Venus and Mars data return, and for giant planet probe Doppler measurements
- DTE underperforms for giant planet probe data return
- DTE is an old tool from the mission architect's and radio engineer's toolkit; they will use it when it is appropriate

Questions?